已知抛物线经过A(1,0)、B(3,0)、C(0,3)三个点,
(1)求抛物线的解析式;
(2)如图(1),作△OBC的外接圆⊙Oˊ,D为BC上方半圆上一点,当tan∠COD=时,求OD的长;
(3)如图(2)直线y=x-2与抛物线交于E、F两点,与y轴交于点G,作y轴的平行线,分别与线段EF、抛物线交于P、Q两点(点P与E、F不重合),点K为射线PE上一点,当△PQK与△BAC相似时,求△PQK的最大面积。
解方程:
仁寿县交警大队一辆警车沿着一条南北方向的公路巡视,某天早晨从A地出发,晚上到达B地,约定向北为正方向,当天行驶记录如下(单位:千米)+18.3,-9.5,+7.1,-14,-6.2,+13, -6.8,-8.5。问:
(1)B地在 A地哪个方向?相距多少千米?
(2)若该警车每小时蚝油3.35升,那么该天共耗油多少升?(结果保留两个有效数字)
(3)若油箱中有250升油,中途是否需要加油?若需要,至少加多少升?
某市有甲、乙两种出租车,他们的服务质量相同.甲的计价方式为:当行驶路程不超过3千米时收费10元,每超过1千米则另外收费1.2元(不足1千米按1千米收费);乙的计价方式为:当行驶路程不超过3千米时收费8元,每超过1千米则另外收费1.8元(不足1千米按1千米收费).某人到该市出差,需要乘坐的路程为x千米.
(1)用代数式表示此人分别乘坐甲、乙出租车各所需要的费用;
(2)假设此人乘坐的路程为13千米多一点,请问他乘坐哪种车较合算?
若a、b互为相反数,c、d互为倒数,∣m∣=3,求+m2-3cd+5 m的值.
先化简,再求值: ,其中