如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.
(1)求∠CAD的度数;
(2)延长AC至E,使CE=AC,求证:DA=DE.
某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.
(1)写出商场销售这种文具,每天所得的销售利润(元)与销售单价
(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)商场的营销部结合上述情况,提出了A、B两种营销方案
方案A:该文具的销售单价高于进价且不超过30元;
方案B:每天销售量不少于10件,且每件文具的利润至少为25元.
请比较哪种方案的最大利润更高?并说明理由.
已知二次函数中,函数
与自变量
的部分对应值如下表:
![]() |
… |
-1 |
0 |
1 |
2 |
3 |
4 |
… |
![]() |
… |
10 |
5 |
2 |
1 |
2 |
5 |
… |
(1)求该二次函数的解析式;
(2)当为何值时,
有最小值?最小值是多少?
(3)若A(,
),B(
,
)都在该抛物线上,试比较y1和y2的大小.
已知抛物线.
(1)求证:该抛物线与轴一定有两个交点;
(2)若该抛物线与轴的两个交点分别为A、B,且它的顶点为P,求△ABP的面积。
如图,A(-1,0),B(2,-3)两点都在一次函数与二次函数
的图象上.
(1)求和
,
的值;
(2)请直接写出当>
时,自变量
的取值范围.
二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在轴正半轴上,且AB=OC.
(1)求C的坐标;
(2)求二次函数的解析式,并求出函数最大值.