(本小题满分10分)选修4—1:几何证明选讲
如图,在△ABC中,,以
为直径的⊙O交
于
,过点
作⊙O的切线交
于
,
交⊙O于点.
(Ⅰ)证明:是
的中点;
(Ⅱ)证明:.
已知在区间
上是增函数
(I)求实数的取值范围;
(II)记实数的取值范围为集合A,且设关于
的方程
的两个非零实根为
。
①求的最大值;
②试问:是否存在实数m,使得不等式对
及
恒成立?若存在,求m的取值范围;若不存在,请说明理由.
已知函数
(1) 若函数是单调递增函数,求实数
的取值范围;
(2)当时,两曲线
有公共点P,设曲线
在P处的切线分别为
,若切线
与
轴围成一个等腰三角形,求P点坐标和
的值;
(3)当时,讨论关于
的方程
的根的个数
已知函数,
(1)求函数图象的对称中心;
(2)若,求
在区间
上的最大值
;
(3)若数列满足
,
求数列的通项公式
设计一种正四棱柱形冰箱,它有一个冷冻室和一个冷藏室,冷藏室用两层隔板分为三个抽屉,问:如何设计它的外形尺寸,能使得冰箱体积为定值时,它的表面和三层隔板(包括冷冻室的底层)面积之和S值最小
(参考数据:
,
,
)
如图,在五棱锥中,
底面
,
,
,
。
(1)证明:平面
;
(2)求二面角的余弦值。