如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.5°,∠PBA=26.5°.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)
(参考数据:sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80,sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50)
在△ABC中,中线BE、CF交于点O,M、N分别是BO、CO中点,则四边形MNEF是什么特殊四边形?并说明理由
选择合适的方法
(1)2
(2)
(3)
(4)
(5)
计算:
(1)(因式分解法)
(2)(公式法)
(3)(配方法)
(4)(因式分解法)
如图,已知A、B、C、D为矩形的四个顶点,AB=16㎝,AD=6㎝,动点P、Q分别从点A、C同时出发,点P以3㎝/s的速度向点B移动,一直到点B为止,点Q以2㎝/s的速度向点D移动.问
(1)P、Q两点从出发开始几秒时,点P点Q间的距离是10厘米.
(2)P、Q两点间距离何时最小。
对称轴为直线 的抛物线y =x2+bx+c,与
轴相交于
,
两点,其中点
的坐标为(
3,0).
(1)求点的坐标.
(2)点是抛物线与
轴的交点,点
是线段
上的动点,作
轴交抛物线于点
,求线段
长度的最大值.