图中的小方格都是边长为1的正方形,△ABC的顶点和O点都在正方形的顶点上.
(1)以点O为位似中心,在方格图中将△ABC放大为原来的2倍,得到△A′B′C′;
(2)△A′B′C′绕点B′顺时针旋转90°,画出旋转后得到的△A″B′C″,并求边A′B′在旋转过程中扫过的图形面积.
某校七、八年级各有10名同学参加市级数学竞赛,各参赛选手的成绩如下(单位:分)
七年级:89,92,92,92,93,95,95,96,98,98
八年级:88,93,93,93,94,94,95,95,97,98
整理得到如下统计表:
年级 |
最高分 |
平均分 |
众数 |
方差 |
七年级 |
98 |
94 |
|
7.6 |
八年级 |
98 |
94 |
93 |
|
根据以上信息,完成下列问题:
(1)填空: ;
(2)求表中 的值,并判断两个年级中哪个年级成绩更稳定;
(3)七年级两名最高分选手分别记为: , ,八年级第一、第二名选手分别记为: , ,现从这四人中,任意选取两人参加市级经验交流,请用树状图法或列表法求出这两人分别来自不同年级的概率.
如图,在平面直角坐标系中, 为等腰直角三角形, ,抛物线 经过 , 两点,其中点 , 的坐标分别为 , ,抛物线的顶点为点 .
(1)求抛物线的解析式;
(2)点 是直角三角形 斜边 上的一个动点(不与 , 重合),过点 作 轴的垂线,交抛物线于点 ,当线段 的长度最大时,求点 的坐标;
(3)在(2)的条件下,抛物线上是否存在一点 ,使 是以 为直角边的直角三角形?若存在,求出所有点 的坐标;若不存在,请说明理由.
如图, 是 的外接圆, 为直径, 的平分线交 于点 ,过点 的切线分别交 , 的延长线于 , ,连接 .
(1)求证: ;
(2)若 , ,求 的半径.
如图,在四边形 中, , 平分 , ,垂足为点 .
(1)求证:四边形 是菱形;
(2)若 , ,求四边形 的面积.
政府为了美化人民公园,计划对公园某区域进行改造,这项工程先由甲工程队施工10天完成了工程的 ,为了加快工程进度,乙工程队也加入施工,甲、乙两个工程队合作10天完成了剩余的工程,求乙工程队单独完成这项工程需要几天.