游客
题文

(1)问题情境:如图(1),已知,锐角∠AOB内有一定点P,过点P任意作一条直线MN,分别交射线OA、OB于点M、N.将直线MN绕着点P旋转,旋转过程中△MON的面积存在最小值.请问当直线MN在什么位置时,△MON的面积最小,并说明理由.

方法探究:小明与小亮二人一起研究,一会儿,小明说有办法了.小亮问:“怎么解决?”小明画出了图(2)的四边形,说:“四边形ABCD中,AD//BC,取DC边的中点E,连结AE并延长交BC的延长线于点F.显然有△ADE≌△FCE,则S四边形ABCD=SABF(S表示面积).借助这图和图中的结论就可以解决了.”
请你照小明提供的方法完成“问题情境”这个问题.
(2)实际应用:如图(3),若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB 和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB = 70°,∠POB = 30°,OP= 4km,试求△MON 的面积.(结果精确到0.1km2)

(3)拓展延伸:如图(4),在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)、(6,3)、()、(4,2),过点P的直线l与四边形OABC 一组对边相交,将四边形OABC分成两个四边形,则其中以点O为顶点的四边形的面积的最大值是               

科目 数学   题型 解答题   难度 较难
知识点: 三角形的五心 相似多边形的性质
登录免费查看答案和解析
相关试题

如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C.

(1)求抛物线的解析式;
(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;
(3)P是抛物线上的第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

如图,矩形ABCD的边AB="6" cm,BC="8" cm,在BC上取一点P,在CD边上取一点Q,使∠APQ成直角,设BP="x" cm,CQ="y" cm,试以x为自变量,写出y与x的函数关系式.并求为何值时,有最大值或最小值?

某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量(件)与每件的销售价(元)满足关系:=140-2
(1)写出商场卖这种商品每天的销售利润与每件的销售价间的函数关系式;
(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?

如图,△ABC是一张锐角三角形的硬纸片,AD是边BC上的高,BC=40cm,AD=30c
从这张硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,
顶点G、H分别在AC,AB上,AD与HG的交点为M.

(1)求证:=
(2)求这个矩形EFGH的周长.

已知抛物线轴有两个不同的交点.
(1)求的取值范围;
(2)抛物线x轴两交点的距离为2,求的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号