游客
题文

(1)问题情境:如图(1),已知,锐角∠AOB内有一定点P,过点P任意作一条直线MN,分别交射线OA、OB于点M、N.将直线MN绕着点P旋转,旋转过程中△MON的面积存在最小值.请问当直线MN在什么位置时,△MON的面积最小,并说明理由.

方法探究:小明与小亮二人一起研究,一会儿,小明说有办法了.小亮问:“怎么解决?”小明画出了图(2)的四边形,说:“四边形ABCD中,AD//BC,取DC边的中点E,连结AE并延长交BC的延长线于点F.显然有△ADE≌△FCE,则S四边形ABCD=SABF(S表示面积).借助这图和图中的结论就可以解决了.”
请你照小明提供的方法完成“问题情境”这个问题.
(2)实际应用:如图(3),若在道路OA、OB之间有一村庄Q发生疫情,防疫部门计划以公路OA、OB 和经过防疫站P的一条直线MN为隔离线,建立一个面积最小的三角形隔离区△MON.若测得∠AOB = 70°,∠POB = 30°,OP= 4km,试求△MON 的面积.(结果精确到0.1km2)

(3)拓展延伸:如图(4),在平面直角坐标系中,O为坐标原点,点A、B、C、P的坐标分别为(6,0)、(6,3)、()、(4,2),过点P的直线l与四边形OABC 一组对边相交,将四边形OABC分成两个四边形,则其中以点O为顶点的四边形的面积的最大值是               

科目 数学   题型 解答题   难度 较难
知识点: 三角形的五心 相似多边形的性质
登录免费查看答案和解析
相关试题

已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.
(1)求证:PD是⊙O的切线;
(2)若∠CAB=120°,AB=2,求BC的值.

已知,E、F是四边形ABCD的对角线AC上的两点,AE=CF,BE=DF,BE∥DF.求证:四边形A BCD是平行四边形.

我市某中学九年级学生对市民“创建精神文明城市“知晓率采取随机抽样的方法进行问卷调查,问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解“、“从未听说”五个等级,统计后的数据整理如下表:

等级
非常了解
比较了解
基本了解
不太了解
从未听说
频数
40
60
48
36
16
频率
0.2
m
0.24
0.18
0.08

(1)本次问卷调查抽取的样本容量为  ,表中m的值为  
(2)根据表中的数据计算等级为“非常广解”的频数在扇形统计图中所对应扇形的圆心角的度数;
(3)根据上述统计结果,请你对政府相关部门提出一句话建议.

有一个均匀的正六面体,六个面上分别标有数字1,2,3,4,5,6,随机地抛掷一次,把朝上一面的数字记为x;另有三张背面完全相同,正面分布写有数字﹣2,﹣1,1的卡片,将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后计算出S=x+y的值.
(1)用树状图或列表法表示出S的所有可能情况;
(2)求出当S<2时的概率.

解不等式组

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号