(本题12分)学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.
(1)甲、乙两种图书的单价分别为多少元?
(2)若学校计划购买这两种图书共40本,其中甲种图书a本,投入的经费为W元,
①请写出W关于a的函数关系式;
②若投入的经费不超过1050元,且使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案? 并求出最节省的购买方案和最节省经费;
(3)若学校计划购买这两种图书总数超过30本,其中甲种图书a本,乙种图书b本,
且投入的经费恰好为690元,则b= ( 写出两种可能的值).
为迎接2020年第35届全国青少年科技创新大赛,某学校举办了 :机器人; :航模; :科幻绘画; :信息学; :科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.
根据统计图中的信息解答下列问题:
(1)本次参加比赛的学生人数是 名;
(2)把条形统计图补充完整;
(3)求扇形统计图中表示机器人的扇形圆心角 的度数;
(4)在 组最优秀的3名同学 名男生2名女生)和 组最优秀的3名同学 名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.
如图,已知一次函数 的图象与反比例函数 的图象交于点 ,点 .
(1)求反比例函数的表达式;
(2)若一次函数图象与 轴交于点 ,点 为点 关于原点 的对称点,求 的面积.
(1)化简: ;
(2)解不等式: .
如图,菱形 的边长为1, ,点 是边 上任意一点(端点除外),线段 的垂直平分线交 , 分别于点 , , , 的中点分别为 , .
(1)求证: ;
(2)求 的最小值;
(3)当点 在 上运动时, 的大小是否变化?为什么?
已知抛物线 .
(1)求这条抛物线的对称轴;
(2)若该抛物线的顶点在 轴上,求其解析式;
(3)设点 , 在抛物线上,若 ,求 的取值范围.