如图,分别是椭圆
的左、右焦点,且焦距为
,动弦
平行于
轴,且
(Ⅰ)求椭圆的方程;
(Ⅱ)若点是椭圆
上异于点
的任意一点,且直线
分别与
轴交于点
,若
的斜率分别为
,求
的取值范围.
(本小题满分10分)选修4-1几何证明选讲
如图,在中,
,
平分
交
于点
,点
在
上,
.
(1)求证:是△
的外接圆的切线;
(2)若,求
的长.
(本小题满分12分)已知函数,其中
.
(Ⅰ)若是
的极值点,求
的值;
(Ⅱ)求的单调区间;
(Ⅲ)若在
上的最大值是
,求
的取值范围 .
(本小题满分12分)如图,已知椭圆的离心率为
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线、
的斜率分别为
、
,证明
;
(Ⅲ)是否存在常数,使得
恒成立?若存在,求
的值;若不存在,请说明理由.
(本小题满分12分)某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费额每满100元可转动如图所示的以为圆心的转盘一次,并获得相应金额的返券,假定指针等可能地指向任一位置(不指向各区域的边界). 若指针停在A区域返券60元;停在B区域返券30元;停在C区域不返券. 例如:消费218元,可转动转盘2次,所获得的返券金额是两次金额之和.
(Ⅰ)若某位顾客消费128元,求返券金额不低于30元的概率;
(Ⅱ)若某位顾客恰好消费280元,并按规则参与了活动,他获得返券的金额记为(元).求随机变量
的分布列和数学期望.
(本小题共12分)如图,四棱锥的底面是直角梯形,
,
,
和
是两个边长为
的正三角形,
,
为
的中点,
为
的中点.
(Ⅰ)求证:平面
;
(Ⅱ)求证:平面
;
(Ⅲ)求直线与平面
所成角的正弦值.