(本小题满分10分)已知函数f(x)=x2+ax+b的图象关于直线x=1对称.
(1)求实数a的值
(2)若f(x)的图象过(2,0)点,求x∈[0,3]时f(x)的值域.
(本题满分14分文科做)已知数列满足递推式
,其中
(Ⅰ)求;
(Ⅱ)并求数列
的通项公式;
(Ⅲ)已知数列有
求数列
的前n项和
.
(本题满分12分) 已知二次函数满足
,且关于
的方程
的两实数根分别在区间(-3,-2),(0,1)内。
(Ⅰ)求实数的取值范围;
(Ⅱ)若函数在区间(-1-
,1-
)上具有单调性,求实数C的取值范围
(本题满分12分)已知椭圆W的中心在原点,焦点在轴上,离心率为
,两条准线间的距离为6. 椭圆W的左焦点为
,过左准线与
轴的交点
任作一条斜率不为零的直线
与椭圆W交于不同的两点
、
,点
关于
轴的对称点为
.
(Ⅰ)求椭圆W的方程;
(Ⅱ)求证:(
);
(本题满分12分) 盒内有大小相同的9个球,其中2个红色球,3个白色球,4个黑色球. 规定取出1个红色球得1分,取出1个白色球得0分,取出1个黑色球得分 . 现从盒内任取3个球.
(Ⅰ)求取出的3个球颜色互不相同的概率;
(Ⅱ)求取出的3个球得分之和恰为1分的概率;
(Ⅲ)(文科) 求取出的3个球中白色球的个数为2个的概率
(Ⅲ)(理科)设为取出的3个球中白色球的个数,求
的分布列和数学期望.
(本题满分12分)如图所示,四棱锥的底面为直角梯形,
,
,
,
,
底面
,
为
的中点.
(Ⅰ)求证:平面平面
;
(Ⅱ)求直线与平面
所成的角;
(Ⅲ)求点到平面
的距离.