如图,直三棱柱中,
,
为
中点,求直线
与平面
所成角的大小.(结果用反三角函数值表示)
以直角坐标系的原点为极点,
轴的正半轴为极轴,已知点
的直角坐标为
,点
的极坐标为
,若直线
过点
,且倾斜角为
,圆
以
为 圆心、
为半径。
(1)圆的极坐标方程;
(2)试判定直线和圆
的位置关系。
如图,在平面直角坐标系中,过
轴正方向上一点
任作一直线,与抛物线
相交于
两点.一条垂直于
轴的直线,分别与线段
和直线
交于点
.
(1)若,求
的值;
(2)若为线段
的中点,求证:
为此抛物线的切线;
(3)试问(2)的逆命题是否成立?说明理由.
已知函数,
为实数,(
).
(Ⅰ)若,求函数
的极值;
(Ⅱ)若,且函数
有三个不同的零点,求实数
的取值范围.
某重点高校数学教育专业的三位毕业生甲,乙,丙参加了一所中学的招聘面试,面试合格者可以正式签约,毕业生甲表示只要面试合格就签约,毕业生乙和丙则约定:两人面试合格就一同签约,否则两人都不签约,设每人面试合格的概率都是,且面试是否合格互不影响,求:(1)至少有1人面试合格的概率;(2)签约人数X的分布列及数学期望。
如图,四棱锥P-ABCD中,AD∥BC,∠ADC=,
PC⊥平面ABCD,点E为AB中点。AC⊥DE,
其中AD=1,PC=2,CD=;
(1)求异面直线DE与PB所成角的余弦值;
(2)求直线PC与平面PDE所成角的余弦值。