(本小题满分12分)在中,内角
的对边分别为
,且
.
(Ⅰ)求角的大小;
(Ⅱ)若,求
的值.
如图,在半径为的半圆形(O为圆心)铁皮上截取一块矩形材料ABCD,其中点A、B在直径上,点C、D在圆周上,将所截得的矩形铁皮ABCD卷成一个以AD为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),记圆柱形罐子的体积为
.
(1)按下列要求建立函数关系式:
①设,将
表示为
的函数;
②设(
),将
表示为
的函数;
(2)请您选用(1)问中的一个函数关系,求圆柱形罐子的最大体积.
某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市18~68岁的人群抽取一个容量为的样本,并将样本数据分成五组:
,再将其按从左到右的顺序分别编号为第1组,第2组,
,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.
组号 |
分组 |
回答正确的人数 |
回答正确的人数占本组的比例 |
第1组 |
[18,28) |
5 |
0.5 |
第2组 |
[28,38) |
18 |
![]() |
第3组 |
[38,48) |
27 |
0.9 |
第4组 |
[48,58) |
![]() |
0.36 |
第5组 |
[58,68) |
3 |
0.2 |
(1)分别求出,
的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.
已知命题:实数
满足
;命题q:实数
满足
.
(1)当时,若“
且
”为真,求实数
的取值范围;
(2)若“非”是“非
”的必要不充分条件,求实数
的取值范围.
如图,斜三棱柱中,侧面
是菱形,
与
交于点
,E是AB的中点.
求证:(1)平面
;
(2)若,求证:
.
已知椭圆经过点
,离心率为
,动点M(2,t)(
).
(1)求椭圆的标准方程;
(2)求以OM为直径且截直线所得的弦长为2的圆的方程;
(3)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,证明线段ON的长为定值,并求出这个定值.