游客
题文

如图1,抛物线),与轴的交于A、B两点(点
A在点B的右侧),与轴的正半轴交于点C,顶点为D.

(1)求顶点D的坐标(用含的代数式表示);
(2)若以AD为直径的圆经过点C.
① 求抛物线的解析式;
② 如图2,点E是y轴负半轴上的一点,连结BE,将△OBE绕平面内某一点旋转180°,得到△PMN(点P、M、N分别和点O、B、E对应),并且点M、N都在抛物线上,作MF⊥x轴于点F,若线段MF:BF=1:2,求点M、N的坐标;
③ 点Q在抛物线的对称轴上,以Q为圆心的圆过A、B两点,并且和直线CD相切,如图3,求点Q的坐标.

科目 数学   题型 解答题   难度 较难
知识点: 圆幂定理 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图1,在△ABC中,ABBC=5,AC="6." △ECD是△ABC沿CB方向平移得到的,连结AEACBE相交于点O.

(1)判断四边形ABCE是怎样的四边形,并证明你的结论;
(2)如图2,P是线段BC上一动点(不与点B、C重合),连接PO并延长交线段AE于点QQRBD,垂足为点R.
①四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积;
②当线段BP的长为何值时,以点PQR为顶点的三角形与△BOC相似?

已知关于x的一元二次方程.
(1)若方程有实数根,试确定ab之间的大小关系;
(2)若ab=2∶,且,求ab的值;
(3)在(2)的条件下,二次函数的图象与x轴的交点为AC(点A在点C的左侧),与y轴的交点为B,顶点为D.若点Pxy)是四边形ABCD边上的点,试求3xy的最大值.

如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图3中,将三棱柱沿过点A的侧棱剪开,得到如图4的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究.

(1)请在图4中画出拼接后符合条件的平行四边形;
(2)请在图2中,计算裁剪的角度(即∠ABM的度数).

某商店在四个月的试销期内,只销售AB两个品牌的电视机,共售出400台.试销结束后,将决定经销其中的一个品牌.为作出决定,经销人员正在绘制两幅统计图,如图l和图2.

(1)第四个月销量占总销量的百分比是_______;
(2)在图2中补全表示B品牌电视机月销量的折线图;
(3)经计算,两个品牌电视机月销量的平均水平相同,请你结合折线的走势进行简要分析,判断该商店应经销哪个品牌的电视机.

如图,四边形ABCD是平行四边形,以AB为直径的
O经过点DE是⊙O上一点,且ÐAED=45°.

(1) 试判断CD与⊙O的位置关系,并证明你的结论;
(2) 若⊙O的半径为3,sinÐADE=,求AE的值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号