(本小题满分10分)已知,
,
的夹角为60o,
,
,
,求
的值。
有四个数:前三个成等差数列,后三个成等比数列。首末两数和为16,中间两数和为12。求这四个数。
如图,三棱柱中,侧面
底面
,
,且
,O为
中点.
(Ⅰ)证明:平面
;
(Ⅱ)求直线与平面
所成角的正弦值
袋子中装有编号为a,b的2个黑球和编号为c,d,e的3个红球,从中任意摸出2个球.
(Ⅰ)写出所有不同的结果;
(Ⅱ)求恰好摸出1个黑球和1个红球的概率;
(Ⅲ) 求至少摸出1个黑球的概率.
已知数列{an}各项均为正数,Sn为其前n项和,对于,总有
成等差数列.
(I )求数列{an}的通项an;
(II)设数列的前n项和为Tn,数列{Tn}的前n项和为Rn,求证:
时,
;
(III)对任意,试比较
与
的大小
在ΔABC中,顶点A,B, C所对三边分别是a,b,c已知B(-1, 0), C(1, 0),且b,a, c成等差数列.
(I )求顶点A的轨迹方程;
(II) 设顶点A的轨迹与直线y=kx+m相交于不同的两点M、N,如果存在过点P(0,-)的直线l,使得点M、N关于l对称,求实数m的取值范围