游客
题文

如图,在每一个四边形ABCD中,均有AD//BC,CD⊥BC∠ABC=60°,AD=8,BC=12.

(1)如图①,点M是四边形ABCD边AD上的一点,则△BMC的面积为__________;
(2)如图②,点N是四边形ABCD边AD上的任意一点,请你求出△BNC周长的最小值;
(3)如图③,在四边形ABCD的边AD上,是否存在一点P,使得cos∠BPC的值最小?若存在,求出此时
cos∠BPC的值;若不存在,请说明理由。

科目 数学   题型 解答题   难度 中等
知识点: 圆幂定理 圆内接四边形的性质 解直角三角形
登录免费查看答案和解析
相关试题


交于点A,且与x轴交于点B.
(1)求点A和点B的坐标;
(2)过点AACy轴于点C,过点B作直线ly轴.动点P从点O出发,以每秒1个单位长的速度,沿OCA的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线lx轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.
①当t为何值时,以APR为顶点的三角形的面积为8?
②是否存在以APQ为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.

情境观察:将矩形ABCD纸片沿对角线AC剪开,得到△ABC和△A′C′D,如图1所示.将△A′C′D的顶点A′与点A重合,并绕点A按逆时针方向旋转,使点DA(A′)、B在同一条直线上,如图2所示.
观察图2可知:与BC相等的线段是,∠CAC′=°.

问题探究:如图3,△ABC中,AGBC于点G,以A为直角顶点,分别以ABAC为直角边,向△ABC外作等腰RtABE和等腰RtACF,过点EF作射线GA的垂线,垂足分别为PQ. 试探究EPFQ之间的数量关系,并证明你的结论.

拓展延伸:如图4,△ABC中,AGBC于点G,分别以ABAC为一边向△ABC外作矩形ABME和矩形ACNF,射线GAEF于点H. 若AB= k AEAC= k AF,试探究HEHF之间的数量关系,并说明理由.

中,边的中点,于点.动点从点出发沿射线以每秒厘米的速度运动.同时,动点从点出发沿射线运动,且始终保持设运动时间为秒().
(1)相似吗?以图1为例说明理由;
(2)若厘米.
①求动点的运动速度;
②设的面积为(平方厘米),求的函数关系式;
(3)探求三者之间的数量关系,以图1为例说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号