游客
题文

如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.

(1)当AD=CD时,求证DE∥AC;
(2)探究:AD为何值时,以B,M,E为顶点的三角形与以C,E,N为顶点的三角形相似?

科目 数学   题型 解答题   难度 中等
知识点: 相似多边形的性质 对称式和轮换对称式
登录免费查看答案和解析
相关试题

(本题6分)已知二次函数的图像经过点(0,3),顶点坐标为(-4,19),求这个二次函数的解析式,以及图像与x轴的交点坐标。

已知抛物线yax2bxcx轴交于AB两点,与y轴交于点C,其中点Bx轴的正半轴上,点Cy轴的正半轴上,线段OBOC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
(1)求ABC三点的坐标;
(2)求此抛物线的表达式;
(3)连接ACBC,若点E是线段AB上的一个动点(与点A、点B不重合),过点EEFACBC于点F,连接CE,设AE的长为m,△CEF的面积为S,求Sm之间的函数关系式,并写出自变量m的取值范围;
(4)在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由.

如图,在半径是2的⊙O中,点Q为优弧的中点,圆心角∠MON=60°,在上有一动点P,且点P到弦MN所在直线的距离

(1)求弦MN的长;
(2)试求阴影部分面积的函数关系式,并写出自变量的取值范围;
(3)试分析比较,当自变量为何值时,阴影部分面积的大小关系。

有一种可食用的野生菌,上市时,外商李经理按市场价格30元/千克收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将以每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这类野生菌在冷库中最多保存160天,同时,平均每天有3千克的野生菌损坏不能出售。
(1)设天后每千克该野生菌的市场价格为元,试写出之间的函数关系式;
(2)若存放天后,将这批野生菌一次性出售,设这批野生菌的销售总额为元,试写出之间的函数关系式;
(3)李经理将这批野生菌存放多少天后出售可获得最大利润元?(利润=销售总额-收购成本-各种费用)

在直角坐标系xOy中,一次函数yk1xb的图象与反比例函数的图象交于A(1,4)、B(3,m)两点。
(1)求一次函数的解析式;
(2)求△AOB的面积。
(3)当取何值时,反比例函数的值大于一次函数的值.(直接写出答案)

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号