如图,是⊙
的直径,点
是⊙
上一点,
与过点
的切线垂直,垂足为点
,直线
与
的延长线相交于点
,弦
平分∠
,交
于点
,连接
.
(1)求证:平分∠
;
(2)求证:PC=PF;
(3)tanABC=
,AB=14,求线段
的长.
甲、乙两人玩一个转盘游戏.准备如图三个可以自由转动的转盘,甲转动转盘,乙记录指针停下时所指的数字.游戏规定,转动全部三个转盘,指针停下后,三个数字中有数字相同时,就算甲赢,否则就算乙赢.请判断这个游戏是否公平?说明你的理由.
如图,正方形网格中,每一个小正方形的边长都是,四边形
的四个顶点都在格点上,
为
边的中点,若把四边形
绕着点
顺时针旋转
.
画出四边形
旋转后的图形;
设点
旋转后的对应点为
,则
;
求点
在旋转过程中所经过的路径长.
为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动. 对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A、B两组捐款户数的比为1 : 5.
请结合以上信息解答下列问题.a=,本次调查样本的容量是;
先求出C组的户数,再补全“捐款户数分组统计图1”;
若该社区有500户住户,请根据以上信息估计,全社区捐款不少于300元的户数是多少?
如图,已知抛物线的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.
求该抛物线的函数关系式;
求点P在运动的过程中,线段PD的最大值;
当△ADP是直角三角形时,求点P的坐标;
在题(3)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.
在△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕顶点C顺时针旋转,旋转角为(0°<
<180°),得到△A1B1C.
如图1,当AB∥CB1时,设A1B1与BC相交于点D.证明:△A1CD是等边三角形;
如图2,连接AA1、BB1,若△ACA1的面积为S,求△BCB1的面积
如图3,设AC的中点为E,A1B1的中点为P,AC=a,连接EP.求EP的长度最大时∠
的度数,并求出此时EP的最大值.