(本小题满分9分)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0)、B(0,d)、C(-3,2).
(1)求d的值;
(2)将△ABC沿轴的正方向平移a个单位,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图像上.请求出这个反比例函数和此时直线
的解析式;
(3)在(2)的条件下,直线交y轴于点G,作
⊥
轴于
.
是线段
上的一点,若△
和△
面积相等,求点
坐标.
一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:
(1)甲乙两地之间的距离为 千米;
(2)求快车和慢车的速度;
(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.
(1)如图,已知△ABC中,AD⊥BC于D, AE为∠BAC的平分线,∠B=50°,∠C=70°,求∠DAE的度数.
(2)已知在△ABC中,AD⊥BC于点D,AE平分∠BAC(∠C>∠B).求证:∠DAE=(∠C-∠B).
已知一次函数和
的图象都经过点A
,且与
轴分别交于B、C两点,求△ ABC的面积.
甲、乙两件服装的成本共500元,商店老板为获取利润,决定甲服装按50℅的利润标价,乙服装按40%的利润标价出售.在实际出售时,应顾客要求,两件服装均按标价的九折出售,这样商店共获利157元,求两件服装的成本各是多少元?
已知△ABC的三边分别为m2-n2,2mn,m2+n2(m,n为正整数,且m>n),求证:△ABC是直角三角形.