如图,△ABC为等边三角形,以边BC为直径的半圆与边AB,AC分别交于D,F两点,过点D作DE⊥AC,垂足为点E.
(1)判断DF与⊙O的位置关系,并证明你的结论;
(2)过点F作FH⊥BC,垂足为点H,若AB=4,求FH的长(结果保留根号).
如图, 中, , 于点 , ,且 在 下方.点 , 分别是射线 ,射线 上的动点,且点 不与点 重合,点 不与点 重合,连接 ,过点 作 于点 ,连接 .
(1)若 , .
①如图1,当点 在线段 上运动时,请直接写出线段 和线段 的数量关系和位置关系;
②如图2,当点 运动到线段 的延长线上时,试判断①中的结论是否成立,并说明理由;
(2)若 ,请直接写出当线段 和线段 满足什么数量关系时,能使(1)中①的结论仍然成立(用含 的三角函数表示).
俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于 .试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为 本,销售单价为 元.
(1)请直接写出 与 之间的函数关系式和自变量 的取值范围;
(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?
(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润 元最大?最大利润是多少元?
如图, 中, ,以 为直径作 ,点 为 上一点,且 ,连接 并延长交 的延长线于点 .
(1)判断直线 与 的位置关系,并说明理由;
(2)若 , ,求 的长.
为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的 倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
(1)甲、乙两工程队每天能改造道路的长度分别是多少米?
(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
如图, 是路边坡角为 ,长为10米的一道斜坡,在坡顶灯杆 的顶端 处有一探射灯,射出的边缘光线 和 与水平路面 所成的夹角 和 分别是 和 (图中的点 、 、 、 、 、 均在同一平面内, .
(1)求灯杆 的高度;
(2)求 的长度(结果精确到0.1米).(参考数据: . , ,