(本小题满分9分)为提高饮水质量,越来越多的居民开始选购家用净水器,一商场抓住商机,从厂家购进A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元,
(1)求A、B两种型号家用净水器各购进多少台?
(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价-进价)
如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2-7x+12=0的两个根,且OA>OB.
(1)求sin∠ABC的值;
(2)若E为x轴上的点,且S△AOE=,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似?
(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.
自来水公司有甲、乙两个蓄水池,现将甲池的中水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如下所示,结合图象回答下列问题.
(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数表达式;
(2)求注入多长时间甲、乙两个蓄水池水的深度相同;
(3)求注入多长时间甲、乙两个蓄水的池蓄水量相同;
(4)3小时后,若将乙蓄水池中的水按原速全部注入甲蓄水池,又需多长时间?
某校为了了解学生的身高情况,对部分学生的身高进行统计,根据身高(身高取整数,最高179cm,最矮155cm),分别绘制如下统计表和统计图.
(1)这次抽取的学生有多少人?
(2)分布在164.5~169.5cm这一组内的人数是多少?补全直方图.
(3)这次抽样的中位数落在第几组?
如图:在矩形ABCD中,AD=60cm,CD=120cm,E、F为AB边的三等分点,以EF为边在矩形内作等边三角形MEF,N为AB边上一点,EN=10cm; 请在矩形内找一点P,使△PMN为等边三角形(画出图形,并直接写出△PMF的面积).
如图1,抛物线y=ax2-3ax+b经过A(-1,0),C(3,2)两点,与y轴交于点D,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)若直线y=kx-1(k≠0)将四边形ABCD面积二等分,求k的值;
(3)如图2,过点E(1,-1)作EF⊥x轴于点F,将△AEF绕平面内某点旋转180°后得△MNQ(点M,N,Q分别与点A,E,F对应),使点M,N在抛物线上,求点M,N的坐标.