(本小题满分9分)为提高饮水质量,越来越多的居民开始选购家用净水器,一商场抓住商机,从厂家购进A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元,
(1)求A、B两种型号家用净水器各购进多少台?
(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价-进价)
已知,如图AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.
如图, AC与BD交于点E,且AC=DB,AB=DC.求证:∠A=∠D;
如图,已知直线l的函数表达式为,且l与x轴、y轴分别交于A、B两点,动点Q从B点开始在线段BA上以每秒2个单位的速度向点A移动,同时动点P从A点开始在线段AO上以每秒1个单位的速度向O点移动,设点Q、P移动时间为t秒。
(1)求点A、B的坐标。
(2)当t为何值时,以点A、P、Q为顶点的三角形与△AOB相似?
如图所示,梯形ABCD中,AD∥BC,点E是边AD的中点,连接BE交AC于点F,BE的延长线交CD的延长线于点G。
(1)求证:;
(2)若GE=2,BF=3,求线段EF的长。
如图,在△ABC中,∠BAC=90°,AB=AC,BE平分∠ABC,CE⊥BE,垂足为E.
(1)求证:BD•BE=AB•BC;
(2)延长CE、BA交于F,求证:CF=BD.