某校为调研学生的身高与运动量之间的关系,从高二男生中随机抽取100名学生的身高数据,得到如下频率分布表:
组号 |
分组 |
频数 |
频率 |
第1组 |
[160,165) |
10 |
0.100 |
第2组 |
[165,170) |
① |
0.150 |
第3组 |
[170,175) |
30 |
② |
第4组 |
[175,180) |
25 |
0.250 |
第5组 |
[180,185) |
20 |
0.200 |
合计 |
100 |
1.00 |
(1)求频率分布表中①、②位置相应的数据;
(2)为了对比研究学生运动量与身高的关系,学校计划采用分层抽样的方法从第2、5组中随机抽取7名学生进行跟踪调研,求第2、5组每组抽取的学生数?
(3)在(2)的前提下,学校决定从这7名学生中随机抽取2名学生接受调研访谈,求至少有1名学生来自第5组的概率?
某地区试行高考考试改革:在高三学年中举行5次统一测试,学生如果通过其中2次测试即可获得足够学分升上大学继续学习,不用参加其余的测试,而每个学生最多也只能参加5次测试.假设某学生每次通过测试的概率都是,每次测试时间间隔恰当,每次测试通过与否互相独立.
(1)求该学生考上大学的概率;
(2)求该学生经过4次测试考上大学的概率.
设M点的坐标为(x,y).
(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中取随机取一个数作为y,求M点落在y轴的概率;
(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:
,所表示的平面区域内的概率
投掷一个质地均匀的、每个面上标有一个数字的正方体玩具,它的六个面中,有两个面标的数字是0,两个面标的数字是2,两个面标的数字是4,将此玩具连续抛掷两次,以两次朝上一面的数字分别作为点P的横坐标和纵坐标.
(1)求点P落在区域C:x2+y2≤10内的概率;
(2)若以落在区域C上的所有点为顶点作面积最大的多边形区域M,在区域C上随机散一粒豆子,求豆子落在区域M上的概率.
设an=1+q+q2+…+qn-1,An=Ca1+Ca2+…+Can.
(1)用q和n表示An;
(2)又设b1+b2+…+bn=.求证:数列是等比数列.
若(1+x)6(1-2x)5=a0+a1x+a2x2+…+a11x11.求:
(1)a1+a2+a3+…+a11;
(2)a0+a2+a4+…+a10.