某校为调研学生的身高与运动量之间的关系,从高二男生中随机抽取100名学生的身高数据,得到如下频率分布表:
组号 |
分组 |
频数 |
频率 |
第1组 |
[160,165) |
10 |
0.100 |
第2组 |
[165,170) |
① |
0.150 |
第3组 |
[170,175) |
30 |
② |
第4组 |
[175,180) |
25 |
0.250 |
第5组 |
[180,185) |
20 |
0.200 |
合计 |
100 |
1.00 |
(1)求频率分布表中①、②位置相应的数据;
(2)为了对比研究学生运动量与身高的关系,学校计划采用分层抽样的方法从第2、5组中随机抽取7名学生进行跟踪调研,求第2、5组每组抽取的学生数?
(3)在(2)的前提下,学校决定从这7名学生中随机抽取2名学生接受调研访谈,求至少有1名学生来自第5组的概率?
求值
已知圆C的圆心在坐标原点,且过点M().
(1)求圆C的方程;
(2)已知点P是圆C上的动点,试求点P到直线的距离的最小值;
(3)若直线l与圆C相切,且l与x,y轴的正半轴分别相交于A,B两点,求△ABC的面积最小时直线
l的方程.
已知数列{an}中,a1="1" ,a2=3,且点(n,an)满足函数y = kx + b.
(1)求k,b的值,并写出数列{an}的通项公式;
(2)记,求数列{bn}的前n和Sn.
如图,已知三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AB=BC,∠ABC=90°,D为AC中点.
(1)求证:BD⊥AC1 ;
(2)若AB=,AA1=
,求AC1与平面ABC所成的角.
![]() |
已知函数.
(1)求函数的最小正周期;
(2)将函数的图像上所有的点向右平移
个单位,得到函数
的图像,写出
的解析式,
并求在x∈(0,π)上的单调递增区间.