(本小题满分16分)已知点为椭圆上的任意一点(长轴的端点除外),、分别为左、右焦点,其中a,b为常数.(1)若点P在椭圆的短轴端点位置时,为直角三角形,求椭圆的离心率.(2)求证:直线为椭圆在点P处的切线方程;(3)过椭圆的右准线上任意一点R作椭圆的两条切线,切点分别为S、T.请判断直线ST是否经过定点?若经过定点,求出定点坐标,若不经过定点,请说明理由.
(本小题满分12分)如图所示,在正方体中, E为AB的中点 (1)若为的中点,求证: ∥面; (2) 若为的中点,求二面角的余弦值;
已知,其中. (Ⅰ) 求的值; (Ⅱ) 若,,求的值.
已知函数 (1)若,求实数的取值范围; (2)若在区间[1,2]上恒成立,求实数的取值范围.
若数列的前项和为,点均在函数的图象上 (1)求数列的通项公式; (2)若数列是首项为1,公比为的等比数列,求数列的前项和.
如图,已知四棱锥中,底面是直角梯形,,,,,平面,. (1)求证:平面; (2)求证:平面; (3)若M是PC的中点,求三棱锥M—ACD的体积.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号