若数列的前
项和为
,点
均在函数
的图象上
(1)求数列的通项公式;
(2)若数列是首项为1,公比为
的等比数列,求数列
的前
项和
.
已知函数f(x)的定义域是{x|x≠0},对定义域内的任意x1,x2都有f(x1·x2)=f(x1)+f(x2),且当x>1时,f(x)>0,f(2)=1.
(1)证明:f(x)是偶函数;
(2)证明:f(x)在(0,+∞)上是增函数;
(3)解不等式f(2x2-1)<2.
已知函数,函数
.
(1)求函数与
的解析式,并求出
的定义域;
(2)设,试求函数
的最值.
某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:(其中
是仪器的月产量).
(1)将利润表示为月产量的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?(利润=总收益-总成本)
已知函数f(x)=的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a<1) 的定义域为B.
(1)求A;
(2)若BA, 求实数a的取值范围.
计算:
(1)
(2)已知,计算:
.