(本小题满分12分)如图,在四棱锥
中,
,
平面
,
平面
,
,
,
.
(Ⅰ)求棱锥
的体积;
(Ⅱ)求证:平面
平面
;
(Ⅲ)在线段
上是否存在一点
,使
平面
?若存在,求出
的值;若不存在,说明理由.
化简:
(其中
为第三象限角).
已知
,
,求
的值.
设函数
(Ⅰ)当
时,求
的最大值;
(Ⅱ)令
,(
),其图象上任意一点
处切线的斜率
≤
恒成立,求实数
的取值范围;
(Ⅲ)当
,
,方程
有唯一实数解,求正数
的值.
已知椭圆
的离心率为
,直线l:y=x+2与以原点为圆心、椭圆C1的短半轴长为半径的圆O相切。
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1,且垂直于椭圆的长轴,动直线l2垂直于l1,垂足为点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(Ⅲ)设C2与x轴交于点Q,不同的两点R、S在C2上,且 满足
,求
的取值范围。
如图,矩形ABCD和梯形BEFC所在平面互相垂直,BE//CF,
BCF=
CEF=
,AD=
,EF=2.
(Ⅰ)求证:AE//平面DCF;
(Ⅱ)当AB的长为何值时,二面角A-EF-C的大小为
.