今年我区为绿化行车道,计划购买甲、乙两种树苗共计n棵.设买甲种树苗x棵.有关甲、乙两种树苗的信息如图所示.
(1)当n=500时,
①根据信息填表(用含x代数式表示)
②如果购买甲、乙两种树苗共用25600元,那么甲、乙两种树苗各买了多少棵?
(2)要使这批树苗的成活率不低于92%,且使购买这两种树苗的总费用为26000元,求n的最大值.
若点 的坐标为 , ,其中 满足不等式组 ,求点 所在的象限.
先化简,再求值: ,其中 .
计算: .
如图①,在平面直角坐标系 中,已知 , , , 四点,动点 以每秒 个单位长度的速度沿 运动 不与点 、点 重合),设运动时间为 (秒 .
(1)求经过 、 、 三点的抛物线的解析式;
(2)点 在(1)中的抛物线上,当 为 的中点时,若 ,求点 的坐标;
(3)当 在 上运动时,如图②.过点 作 轴,垂足为 , ,垂足为 .设矩形 与 重叠部分的面积为 ,求 与 的函数关系式,并求出 的最大值;
(4)点 为 轴上一点,直线 与直线 交于点 ,与 轴交于点 .是否存在点 ,使得 为等腰三角形?若存在,直接写出符合条件的所有 点的坐标;若不存在,请说明理由.
某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价 (万元)与产量 (吨 之间的关系如图所示 .已知草莓的产销投入总成本 (万元)与产量 (吨 之间满足 .
(1)直接写出草莓销售单价 (万元)与产量 (吨 之间的函数关系式;
(2)求该合作社所获利润 (万元)与产量 (吨 之间的函数关系式;
(3)为提高农民种植草莓的积极性,合作社决定按0.3万元 吨的标准奖励扶贫对象种植户,为确保合作社所获利润 (万元)不低于55万元,产量至少要达到多少吨?