(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即,k是一个对所有行星都相同的常量。将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式。已知引力常量为G,太阳的质量为M太。
(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立。经测定月地距离为3.84×108m,月球绕地球运动的周期为2.36×106S,试计算地球的质M地。(G=6.67×10-11Nm2/kg2,结果保留一位有效数字)
如图所示,在竖直平面内放置一长为L的薄壁玻璃管,在玻璃管的a端放置一个直径比玻璃管直径略小的小球,小球带电荷量为-q、质量为m。玻璃管右边的空间存在着匀强电场与匀强磁场的复合场。匀强磁场方向垂直于纸面向外,磁感应强度为B;匀强电场方向竖直向下,电场强度大小为mg/q。电磁场的左边界与玻璃管平行,右边界足够远。玻璃管带着小球以水平速度v0垂直于左边界向右运动,由于水平外力的作用,玻璃管进入磁场后速度保持不变,经一段时间后小球从玻璃管b端滑出并能在竖直平面内自由运动,最后从左边界飞离电磁场。设运动过程中小球的电荷量保持不变,不计一切阻力。求:
(1)小球从玻璃管b端滑出时速度的大小
(2)从玻璃管进入磁场至小球从b端滑出的过程中,外力F随时间t变化的关系
(3)通过计算求出小球离开磁场时的速度方向
如图甲所示,MN、PQ为间距L="0" .5m足够长的平行导轨,NQ⊥MN,导轨的电阻均不计。导轨平面与水平面间的夹角,NQ间连接有一个R=4Ω的电阻。有一匀强磁场垂直于导轨平面且方向向上,磁感应强度为B0=1T。将一根质量为m=0.05kg的金属棒ab紧靠NQ放置在导轨上,且与导轨接触良好。现由静止释放金属棒,当金属棒滑行至cd处时达到稳定速度,已知在此过程中通过金属棒截面的电量q=0.2C,且金属棒的加速度a与速度v的关系如图乙所示,设金属棒沿导轨向下运动过程中始终与NQ平行。取g=10m/s2。求:
(1)金属棒与导轨间的动摩擦因数μ;
(2)cd离NQ的距离s;
(3)金属棒滑行至cd处的过程中,电阻R上产生的热量;
低空跳伞是一种极限运动,一般在高楼、悬崖、高塔等固定物上起跳。人在空中降落过程中所受空气阻力随下落速度的增大而变大,而且速度越大空气阻力增大得越快。因低空跳伞下落的高度有限,导致在空中调整姿态、打开伞包的时间较短,所以其危险性比高空跳伞还要高。一名质量为70kg的跳伞运动员背有质量为10kg的伞包从某高层建筑顶层跳下,且一直沿竖直方向下落,其整个运动过程的v-t图象如图所示。已知2.0s末的速度为18m/s,10s末拉开绳索开启降落伞,16.2s时安全落地,并稳稳地站立在地面上。g取10m/s2,请根据此图象估算:
(1)起跳后2s内运动员(包括其随身携带的全部装备)所受平均阻力的大小。
(2)运动员从脚触地到最后速度减为0的过程中,若不计伞的质量及此过程中的空气阻力,则运动员所需承受地面的平均冲击力多大。
如图10所示,一个与平台连接的足够长斜坡倾角,一辆卡车的质量为
。关闭发动机,卡车从静止开始沿斜坡滑下,最大速度可达
,已知卡车运动过程中所受空气阻力和地面阻力与速度成正比,即
。
(1)求出比例系数k;
(2)现使卡车以恒定功率P沿斜坡向上行驶,达到的最大速度为54,求功率P;
(3)当卡车开上平台后,继续保持此恒定功率行驶40s,重新匀速行驶,求卡车开上平台后到匀速行驶的过程中克服阻力所做的功。
在火星上,“Husband Hill”是一个比周围平原稍高的丘陵顶部,一火星探测器在近火星表面的圆轨道上做匀速圆周运动。地面测控中心通过观察与数据分析,探测器在某次通过“Husband Hill”上空后,经时间又连续5次通过该处,求火星的平均密度。(球的体积公式
)