游客
题文

【2015高考浙江,文20】设函数
(1)当时,求函数上的最小值的表达式;
(2)已知函数上存在零点,,求的取值范围.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

、设函数f(x) = x2+bln(x+1),
(1)若对定义域的任意x,都有f(x)≥f(1)成立,求实数b的值;
(2)若函数f(x)在定义域上是单调函数,求实数b的取值范围;
(3)若b=-1,证明对任意的正整数n,不等式成立;

(12分)已知椭圆,直线l与椭圆交于A、B两点,M是线段AB的中点,连接OM并延长交椭圆于点C.直线AB与直线OM的斜率分别为k、m,且

(Ⅰ)求的值;
(Ⅱ)若直线AB经过椭圆的右焦点F,问:对于任意给定的不等于零的实数k,是否存在a∈,使得四边形OACB是平行四边形,请证明你的结论;

已知四棱锥中,平面,底面是直角梯形,的重心,的中点,上,且

(1)求证:
(2)当二面角的正切值为多少时,
平面
(3)在(2)的条件下,求直线与平面成角
的正弦值;

已知数列中,,且当时,函数
取得极值;
(Ⅰ)若,证明数列为等差数列;
(Ⅱ)设数列的前项和为,求

已知斜三棱柱在底面上的射影恰为的中点又知

(1)求证平面
(2)求到平面的距离;
(3)求二面角的余弦值;

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号