【2015高考湖北,文18】某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:
![]() |
0 |
![]() |
![]() |
![]() |
![]() |
![]() |
|
![]() |
|
![]() |
|
![]() |
0 |
5 |
|
![]() |
0 |
(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置,并直接写出函数的解析式;
(Ⅱ)将图象上所有点向左平行移动
个单位长度,得到
图象,求
的图象离原点
最近的对称中心.
根据空气质量指数API(为整数)的不同,可将空气质量分级如下表:
API |
0~50 |
51~ 100 |
101~ 150 |
151~ 200 |
201~ 250 |
251~ 300 |
>300 |
级 别 |
Ⅰ |
Ⅱ |
Ⅲ1 |
Ⅲ2 |
Ⅳ1 |
Ⅳ2 |
Ⅴ |
状 况 |
优 |
良 |
轻微 污染 |
轻度 污染 |
中度 污染 |
中度 重污染 |
重度 污染 |
![]() |
![]() |
![]() |
![]() |
![]() |
对某城市一年(365天)的空气质量进行监测,获得的API数据按照区间[0,50],(50,100],(100,150],(150,200],(200,250],(250,300]进行分组,得到频率分布直方图如图.
(1)求直方图中x的值.
(2)计算一年中空气质量分别为良和轻微污染的天数.
(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.
(结果用分数表示.
已知57=78125,27=128,+
+
+
+
=
,365=73×5).
某校举行环保知识大奖赛,比赛分初赛和决赛两部分.初赛采用选手选一题答一题的方式进行,每位选手最多有5次选题答题的机会,选手累计答对3题或答错3题即终止其初赛的比赛,答对3题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题连续两次答错的概率为.(已知甲回答每个问题的正确率相同,并且相互之间没有影响.)
(1)求选手甲回答一个问题的正确率.
(2)求选手甲可进入决赛的概率.
已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.
(1)求取出的4个球均为黑球的概率.
(2)求取出的4个球中恰有1个红球的概率.
如图,电路由电池A,B,C并联组成.电池A,B,C损坏的概率分别是0.3,0.2,0.2,求电路断电的概率.
已知复数z=x+yi(x,y∈R)在复平面上对应的点为M.
(1)设集合P={-4,-3,-2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个数作为y,求复数z为纯虚数的概率.
(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:所表示的平面区域内的概率.