【2015高考山东,理19】若是一个三位正整数,且
的个位数字大于十位数字,十位数字大于百位数字,则称
为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得
分;若能被10整除,得1分.
(Ⅰ)写出所有个位数字是5的“三位递增数” ;
(Ⅱ)若甲参加活动,求甲得分的分布列和数学期望
.
如图,是圆
的直径,点
是圆
上异于
的点,直线
分别为
的中点。
(1)记平面与平面
的交线为
,试判断
与平面
的位置关系,并加以说明;
(2)设(1)中的直线与圆
的另一个交点为
,且点
满足
,记直线
平面所成的角为
异面直线
与
所成的锐角为
,二面角
的大小为
①求证:
②当点为弧
的中点时,
,求直线
与平面
所成的角的正弦值。
如图,在等腰直角三角形中,
=900 ,
="6,"
分别是
,
上的点,
为
的中点.将
沿
折起,得到如图所示的四棱椎
,其中
(1)证明:;
(2)求二面角的平面角的余弦值.
如图所示,在三棱柱中,
,
,点
分别是
的中点.
(1)求证:平面∥平面
;
(2)求证:平面⊥平面
;
(3)若,
,求异面直线
所成的角。
已知圆台的上、下底面半径分别是2、6,且侧面面积等于两底面面积之和。
(1)求该圆台的母线长;(2)求该圆台的体积。
(1)求经过点A(3,2),B(-2,0)的直线方程。
(2)求过点P(-1,3),并且在两轴上的截距相等的直线方程;