(本题10分)古希腊著名的毕达哥拉斯学派把1、3、6、10 …,这样的数称为“三角形数”,而把1、4、9、16…,这样的数称为“正方形数”.
(1)第5个三角形数是 ,第n个“三角形数”是 ,第5个“正方形数”是 ,第n个正方形数是 ;
(2)经探究我们发现:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.
例如:①4=1+3,②9=3+6,③16=6+10,④ ,⑤ ,….
请写出上面第4个和第5个等式;
(3)在(2)中,请探究第n个等式,并证明你的结论.
(1)观察发现
如题(a)图,若点A,B在直线同侧,在直线
上找一点P,使AP+BP的值最小.
做法如下:作点B关于直线的对称点
,连接
,与直线
的交点就是所求的点P
再如题(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.
做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为.
(2)实践运用
如题(c)图,已知⊙O的直径CD为4,AD的度数为60°,点B是弧AD的中点,在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.
(3)拓展延伸
如题(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留作图痕迹,不必写出作法.
某中学八年级共有400名学生,学校为了增强学生的国防意识,在本年级进行了一次国防知识测验.为了了解这次测验的成绩状况,从中抽取了50名学生的成绩,将所得数据整理后,画出频数分布直方图如图所示.
(1)图中第五个小组的频数是;第四个小组的频率为;第五个小组的频率是;
(2)这次测验中,估计八年级全体学生中成绩在59.5~69.5中的人数约是多少?
(3)试估计这次测验中,八年级全体学生的平均成绩?
计算:(+
-
)×24
如图,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,
求证:AC与⊙O相切。
先化简,再求值:,其中