(本题10分)古希腊著名的毕达哥拉斯学派把1、3、6、10 …,这样的数称为“三角形数”,而把1、4、9、16…,这样的数称为“正方形数”.
(1)第5个三角形数是 ,第n个“三角形数”是 ,第5个“正方形数”是 ,第n个正方形数是 ;
(2)经探究我们发现:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.
例如:①4=1+3,②9=3+6,③16=6+10,④ ,⑤ ,….
请写出上面第4个和第5个等式;
(3)在(2)中,请探究第n个等式,并证明你的结论.
直线y=kx+b交坐标轴于A(-2,0),B(0,3)两点,
|
求不等式kx+b>0的解集.
如图1,在平面直角坐标系中,第一象限内长方形ABCD , AB∥y轴,点A(1,1),点C(a, b), 满足.
(1)求长方形ABCD的面积.
(2)如图2,长方形ABCD以每秒1个单位长度的速度向右平移,同时点E从原点O出发沿x轴以每秒2 个单位长度的速度向右运动,设运动时间为t秒.
①当t=4时,直接写出三角形OAC的面积为_______.
② 若AC∥ED,求t 的值;
(3)在平面直角坐标系中,对于点,我们把点
叫做点
的伴随点,已知点
的伴随点为
,点
的伴随点为
,点
的伴随点为
,…,这样依次得到点
,
,
,…,
.
①若点的坐标为(3,1),则点
的坐标为,点
的坐标为;
②若点的坐标为(
,
),对于任意的正整数
,点
均在
轴上方,则
,
应满足的条件为.
直线EF、GH之间有一个直角三角形ABC,其中∠BAC = 90°,∠ABC =.
(1)如图1,点A在直线EF上,B、C在直线GH上,若∠=60°,∠FAC =30°.求证:EF∥GH;
(2)将三角形ABC如图2放置,直线EF∥GH,点C 、B分别在直线EF、GH上,且BC平分∠ABH,直线CD平分∠FCA交直线GH于D.在取不同数值时,∠BCD的大小是否发生变化?若不变求其值,若变化指出其变化范围.
小武新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.
(1)两种型号的地砖各采购了多少块?
(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?
如图所示的平面直角坐标系中, 将△ABC平移后得到△DEF.已知B点平移的对应点E点(0,-3)(A点与D点对应,C点与F点对应).
(1)△ABC的面积为 ;
(2)画出平移后的△DEF,并写出点D的坐标为,点F的坐标为;
(3)若线段DF交y轴于P, 则点P的坐标为.