【2015高考湖南,理20】已知抛物线的焦点
也是椭圆
的一个焦点,
与
的公共弦的长为
.
(1)求的方程;
(2)过点的直线
与
相交于
,
两点,与
相交于
,
两点,且
与
同向
(ⅰ)若,求直线
的斜率
(ⅱ)设在点
处的切线与
轴的交点为
,证明:直线
绕点
旋转时,
总是钝角三角形
已知正项数列的前n项和为
,且
(1)求、
;
(2)求证:数列是等差数列;
(3)令,问数列
的前多少项的和最小?最小值是多少?
在锐角△ABC中,内角A,B,C的对边分别为且
.
(1)求角A的大小;
(2) 若求△ABC的面积.
已知点(0,
),椭圆
:
的离心率为
,
是椭圆的焦点,直线
的斜率为
,
为坐标原点.
(Ⅰ)求的方程;
(Ⅱ)设过点的直线
与
相交于
两点,当
的面积最大时,求
的方程.
已知 为坐标原点,
为函数
图像上一点,记直线
的斜率
.
(Ⅰ) 若函数 在区间
上存在极值,求实数
的取值范围;
(Ⅱ) 当 时,不等式
恒成立,求实数
的取值范围.
如图,中,
两点分别是线段
的中点,现将
沿
折成直二面角
。
(Ⅰ) 求证:; (Ⅱ)求直线
与平面
所成角的正切值.