已知直线
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
将曲线C的极坐标方程化为直角坐标方程;
设点
的直角坐标为
,直线
与曲线C 的交点为
,
,求
的值.
的外接圆半径
,角
的对边分别是
,且
(1)求角
和边长
;
(2)求
的最大值及取得最大值时的
的值,并判断此时三角形的形状.
已知函数
.
(1)若
的解集为
,求实数
的值.
(2)当
且
时,解关于
的不等式
.
如图,已知⊙O的半径为1,MN是⊙O的直径,过M点作⊙O的切线AM,C是AM的中点,AN交⊙O于B点,若四边形BCON是平行四边形.
(Ⅰ)求AM的长;
(Ⅱ)求sin∠ANC.
已知函数f(x)=alnx+
(a≠0)在(0,
)内有极值.
(I)求实数a的取值范围;
(II)若x1∈(0,
),x2∈(2,+∞)且a∈[
,2]时,求证:f(x1)﹣f(x2)≥ln2+
.
在平面直角坐标系
中,已知椭圆
:
的离心率
,且椭圆C上一点
到点Q
的距离最大值为4,过点
的直线交椭圆
于点
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆上一点,且满足
(O为坐标原点),当
时,求实数
的取值范围.