已知:线段,直线
外一点A.求作:Rt△ABC,使直角边为AC(AC⊥
,垂足为C)斜边AB=c.
已知{an}是公比为q的等比数列,且am、am+2、am+1成等差数列.
(1)求q的值;
(2)设数列{an}的前n项和为Sn,试判断Sm、Sm+2、Sm+1是否成等差数列?并说明理由.
已知圆的内接四边形ABCD的边长分别为AB=2,BC=6, CD=DA=4,
(1)求角A的大小;
(2)求四边形ABCD的面积.
设函数f (x)=cos(2x+)+
sin2x+2a
(1)求函数f (x)的单调递增区间
(2)当0≤x≤时,f (x)的最小值为0,求a的值.
已知a、b、c分别是△ABC三个内角A、B、C的对边.
(1)若△ABC面积为,c=2,A=60º,求a,b的值;
(2)若acosA=bcosB,试判断△ABC的形状,证明你的结论.
如图,在平面直角坐标系中,点
,直线
.设圆
的半径为
,圆心在
上.
(1)若圆心也在直线
上,过点
作圆
的切线,求切线的方程;
(2)若圆上存在点
,使
,求圆心
的横坐标
的取值范围.