已知数列的前n项和是
,且
(1)证明:为等比数列;
(2)证明:
(3)为数列
的前n项和,设
,是否存在正整数m,k,使
成立,若存在,求出m,k;若不存在,说明理由.
选修4-4:坐标系与参数方程
已知平面直角坐标系中,以
为极点,
轴的正半轴为极轴,建立极坐标系,曲线
方程为
.
的参数方程为
(
为参数).
(Ⅰ)写出曲线的直角坐标方程和
的普通方程;
(Ⅱ)设点为曲线
上的任意一点,求点
到曲线
距离的取值范围.
选修4—1:几何证明选讲
如图,四边形内接于⊙
,过点
作⊙
的切线EP交CB的延长线于P,已知
.
证明(Ⅰ);
(Ⅱ).
已知函数f(x)=,曲线
在点(0,2)处的切线与
轴交点的横坐标为-2.
(Ⅰ)求a;
(Ⅱ)当时,曲线
与直线
只有一个交点,求x的取值范围.
已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,
直线与以椭圆C的右焦点为圆心,以椭圆的长半轴长为半径的圆相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P为椭圆C上一点,若过点的直线
与椭圆C相交于不同的两点S和T,满足
(O为坐标原点),求实数
的取值范围.
心理学家分析发现视觉和空间能力与性别有关, 某数学兴趣小组为了 验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学 (男30女20), 给所有同学几何题和代数题各一题, 让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)
(Ⅰ)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(Ⅱ)经过多次测试后,甲每次解答一道几何题所用的时间在5—7分钟,乙每次解答一道几何题所用
的时间在6—8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率.
(Ⅲ)现从选择做几何题的8名女生中任意抽取两人对她们的答题情况进行全程研究,记甲、 乙两女
生被抽到的人数为X, 求X的分布列及数学期望E(X) .
附表及公式