(本小题满分12分)已知z,y之间的一组数据如下表:
x |
1 |
3 |
6 |
7 |
8 |
y |
1 |
2 |
3 |
4 |
5 |
(1)从x ,y中各取一个数,求x+y≥10的概率;
(2)对于表中数据,甲、乙两同学给出的拟合直线分别为与
,试利用“最小平方法(也称最小二乘法)”判断哪条直线拟合程度更好.
(本小题满分14分)在如图所示的几何体中,,
,
是
的中点,
,
,
.
(Ⅰ)求证:;
(Ⅱ)求证:;
(Ⅲ) 求三棱锥的体积.
(本小题满分13分)已知数列的前
项和为
,且
(其中
是不为零的常数),
.
(Ⅰ)证明:数列是等比数列;
(Ⅱ)当=1时,数列
求数列
的通项公式.
(本小题满分13分)
某大学志愿者协会有10名同学,成员构成如下表,其中表中部分数据不清楚,只知道从这10名同学中随机抽取一位,抽到该名同学为“数学专业”的概率为.
专业 性别 |
中文 |
英语 |
数学 |
体育 |
男 |
![]() |
1 |
![]() |
1 |
女 |
1 |
1 |
1 |
1 |
(Ⅰ)求的值;
(Ⅱ)现从男同学中随机选取2名同学,进行社会公益活动(每位同学被选到的可能性相同),求选出的这2名男同学中至少有一位同学是“数学专业”的概率.
(本小题满分13分)在中,角
所对的三边分别为
,
,且
(Ⅰ)求;
(Ⅱ)求的面积.
(本小题满分13分)如图,在一个可以向下和向右方无限延伸的表格中,将正偶数按已填好的各个方格中的数字显现的规律填入各方格中.其中第行,第
列的数记作
,
,如
.
2 |
4 |
8 |
14 |
|
6 |
10 |
16 |
24 |
|
12 |
18 |
26 |
36 |
|
20 |
28 |
38 |
50 |
|
(Ⅰ)写出的值;
(Ⅱ)若求
的值;(只需写出结论)
(Ⅲ)设,
(
), 记数列
的前
项和为
,求
;并求正整数
,使得对任意
,均有
.