(本小题满分13分)已知函数,其中
.
(1)当时,求函数
的图象在点
处的切线方程;
(2)当时,证明:存在实数
,使得对于任意的实数
,都有
成立;
(3)当时,是否存在实数
,使得关于
的方程
仅有负实数解?当
时的情形又如何?(只需写出结论).
(本小题满分10分)为了研究某种细菌在特定环境下,随时间变化繁殖情况,得如下实验数据:
天数t(天) |
3 |
4 |
5 |
6 |
7 |
繁殖个数y(千个) |
2.5 |
3 |
4 |
4.5 |
6 |
(Ⅰ)求y关于t的线性回归方程;
(Ⅱ)利用(Ⅰ)中的回归方程,预测时,细菌繁殖个数.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:,
.
(本小题满分10分)设:
;
:
.若
是
的必要而不充分条件,求实数
的取值范围.
【原创】在复平面内,,
,
(1)若,求点
的轨迹
方程;
(2)过复数对应的点M作斜率为1直线
与曲线
交于A、B两点,求线段AB的长度.
(本小题满分10分)选修4—5:不等式选讲
已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(1)当a=-2时,求不等式f(x)<g(x)的解集;
(2)设a>-1,且当x∈时,f(x)≤g(x),求a的取值范围.
(本小题满分10分)选修4—4:坐标系与参数方程
已知曲线C1的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.
(1)把C1的参数方程化为极坐标方程;
(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).