选修4-4:坐标系与参数方程
在平面直角坐标系中,直线
的参数方程为
(
为参数).在以原点
为极点,
轴正半轴为极轴的极坐标中,圆
的方程为
.
(1)写出直线的普通方程和圆
的直角坐标方程;
(2)若点坐标为
,圆
与直线
交于
,
两点,求
的值.
设函数.
(Ⅰ)当时,求函数
的单调区间;
(Ⅱ)设函数对任意
都有
成立,求
的取值范围.
在△ABC中,顶点A,B
,动点D,E满足:①
;②
,③
共线.
(Ⅰ)求△ABC顶点C的轨迹方程;
(Ⅱ)是否存在圆心在原点的圆,只要该圆的切线与顶点C的轨迹有两个不同交点M,N,就一定有,若存在,求该圆的方程;若不存在,请说明理由.
如图,在四棱锥S-ABCD中,AB⊥AD,AB∥CD,CD=3AB=3,平面SAD⊥平面ABCD,E是线段AD上一点,AE=ED=,SE⊥AD.
(Ⅰ)证明:平面SBE⊥平面SEC;
(Ⅱ)若SE=1,求直线CE与平面SBC所成角的正弦值.
第30届夏季奥运会将于2012年7月27日在伦敦举行,当地某学校招募了8名男志愿者和12名女志愿者。将这20名志愿者的身高编成如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”。
(I)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(Ⅱ)若从所有“高个子”中选3名志愿者,用X表示所选志愿者中能担任“礼仪小姐”的人数,试写出X的分布列,并求X的数学期望。
已知等差数列满足:
.
(Ⅰ)求的通项公式;
(Ⅱ)若(
),求数列
的前n项和
.