第30届夏季奥运会将于2012年7月27日在伦敦举行,当地某学校招募了8名男志愿者和12名女志愿者。将这20名志愿者的身高编成如下茎叶图(单位:cm):若身高在180cm以上(包括180cm)定义为“高个子”,身高在180cm以下(不包括180cm)定义为“非高个子”,且只有“女高个子”才能担任“礼仪小姐”。
(I)如果用分层抽样的方法从“高个子”和“非高个子”中抽取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(Ⅱ)若从所有“高个子”中选3名志愿者,用X表示所选志愿者中能担任“礼仪小姐”的人数,试写出X的分布列,并求X的数学期望。
如图,已知切⊙
于点E,割线PBA交⊙
于A、B两点,∠APE的平分线和AE、BE分别交于点C、D.
求证:(Ⅰ); (Ⅱ)
.
已知函数=
,
=
,若曲线
和曲线
都过点P(0,2),且在点P处有相同的切线
.
(Ⅰ)求,
,
,
的值;
(Ⅱ)若≥-2时,
≤
,求
的取值范围.
设为实数,函数
(Ⅰ)求的单调区间与极值;
(Ⅱ)求证:当且
时,
某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为
,当年产量不足80千件时,
(万元).当年产量不小于80千件时,
(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.
(Ⅰ)写出年利润(万元)关于年产量
(千件)的函数解析式;
(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?
设函数
(1)设,
,证明:
在区间
内存在唯一的零点;
(2) 设,若对任意
,有
,求
的取值范围;
(3)在(1)的条件下,设是
在
内的零点,判断数列
的增减性.