在中,角
所对的边分别为
,已知
.
(1)当时,
①若,求
;
②若,求
的值;
(2)当时,若
,求
面积最大值.
设不等式的解集是
,
.
(I)试比较与
的大小;
(II)设表示数集
的最大数.
,求证:
.
在平面直角坐标系中,曲线
的参数方程为
(
,
为参数),在以
为极点,
轴的正半轴为极轴的极坐标系中,曲线
是圆心在极轴上,且经过极点的圆.已知曲线
上的点
对应的参数
,射线
与曲线
交于点
.
(I)求曲线,
的方程;
(II)若点,
在曲线
上,求
的值.
如图,A,B,C,D四点在同一圆上,与
的延长线交于点
,点
在
的延长线上.
(Ⅰ)若,求
的值;
(Ⅱ)若,证明:
已知函数,
(Ⅰ)当时,求函数
的单调递增区间;
(Ⅱ)在区间内至少存在一个实数
,使得
成立,求实数
的取值范围.
设椭圆:
的离心率为
,点
(
,0),
(0,
)原点
到直线
的距离为
(Ⅰ)求椭圆的方程;
(Ⅱ)设点为(
,0),点
在椭圆
上(与
、
均不重合),点
在直线
上,若直线
的方程为
,且
,试求直线
的方程.