(本小题满分12分)已知一个袋子中有3个白球和3个红球,这些球除颜色外完全相同.
(Ⅰ)每次从袋中取出一个球,取出后不放回,直到取到一个红球为止,求取球次数的分布列和数学期望
;
(Ⅱ)每次从袋中取出一个球,取出后放回接着再取一个球,这样取3次,求取出红球次数的数学期望
.
(本小题共13分)
已知某个几何体的三视图如图(主视图的弧线是半圆),根据图中标出的数据,
(Ⅰ)求这个组合体的表面积;
(Ⅱ)若组合体的底部几何体记为,其中
为正方形.
(i)求证:;
(ii)设点为棱
上
一点,求直线
与平面
所成角的正弦值的取值范围.
(本小题共13分)
如图,当甲船位于处时获悉,在其正东方向相距20海里的
处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西
30
,相距10海里
处的乙船.
(Ⅰ)求处于处的乙船和遇险渔船间的距离;
(Ⅱ)设乙船沿直线
方向前往
处救援,其方向与
成
角,求
的值域.
已知二次函数的二次项系数为
,且不等式
的解集为
。
(Ⅰ)若方程有两个相等的根,求
的解析式;
(Ⅱ)若的最大值为正数,求
的取值范围。
设数列的前
项和为
,且
,数列
为等差数列,公差大于0,且
是方程
的两个实根
(1) 求数列、
的通项公式;(2) 若
,求数列
的前
项和
如图(1),△是等腰直角三角形,
E、F分别为AC、AB的中点,将△AEF沿EF折起,使
在平面BCEF上的射影O恰好为EC的中点,得到图(2)。
(Ⅰ)求证:;(Ⅱ)求三棱锥
的体积。