(本小题满分12分)班主任为了对本班学生的考试成绩进行分析,决定从全班名女同学,
名男同学中随机抽取一个容量为
的样本进行分析.随机抽出
位,他们的数学分数从小到大排序是:
、
、
、
、
、
、
、
,物理分数从小到大排序是:
、
、
、
、
、
、
、
.
(Ⅰ)如果按性别比例分层抽样,男女同学分别抽取多少人?
(Ⅱ)若这位同学的数学、物理分数对应如下表:
学生编号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
数学分数x |
60 |
65 |
70 |
75 |
80 |
85 |
90 |
95 |
物理分数y |
72 |
77 |
80 |
84 |
88 |
90 |
93 |
95 |
根据上表数据用变量与
的相关系数或散点图说明物理成绩
与数学成绩
之间是否具有线性相关性?如果具有线性相关性,求
与
的线性回归方程(系数精确到
);如果不具有线性相关性,请说明理由.
参考公式:相关系数;回归直线的方程是:
.
其中对应的回归估计值:
参考数据:,
.
如图,底面边长为a,高为h的正三棱柱ABC-A1B1C1,其中D是AB的中点,E是BC的三等分点.求几何体BDEA1B1C1的体积.
四面体的六条棱中,有五条棱长都等于a.
(1)求该四面体的体积的最大值;
(2)当四面体的体积最大时,求其表面积.
在边长为a的正三角形铁皮的三个角切去三个全等的四边形,再把它的边沿虚线折起(如图),做成一个无盖的正三角形底铁皮箱,当箱底边长为多少时,箱子容积最大?最大容积是多少?
在△ABC中,∠BAC=90°,∠B=60°,AB=1,D为线段BC的中点,E、F为线段AC的三等分点(如图①).将△ABD沿着AD折起到△AB′D的位置,连结B′C(如图②).
图①
图②
(1)若平面AB′D⊥平面ADC,求三棱锥B′-ADC的体积;
(2)记线段B′C的中点为H,平面B′ED与平面HFD的交线为l,求证:HF∥l;
(3)求证:AD⊥B′E.
如图①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图②所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连结AB,设点F是AB的中点.图①
图②
(1)求证:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥B-DEG的体积.