(本题14分)如图①,直线:
分别与
轴、
轴交于A、B两点,与直线
:
交于点
.
(1)求A、B两点坐标及、
的值;
(2)如图②,在线段BC上有一点E,过点E作轴的平行线交直线
于点F,过E、F分别作EH⊥
轴,FG⊥
轴,垂足分别为H、G,设点E的横坐标为
,当
为何值时,矩形EFGH的面积为
;
(3)若点P为轴上一点,则在平面直角坐标系中是否存在一点Q,使得P、Q、A、B四个点能构成一个菱形.若存在,求出所有符合条件的Q点坐标;若不存在,请说明理由.
已知在长方形ABCD中,AB=4,BC=,O为BC上一点,BO=
,如图所示,以BC所在直线为x轴,O为坐标原点建立平面直角坐标系,M为线段OC上的一点.
(1)若点M的坐标为(1,0),如图①,以OM为一边作等腰△OMP,使点P在长方形ABCD的一边上,则符合条件的等腰三角形有几个?请直接写出所有符合条件的点P的坐标;
(2)若将(1)中的点M的坐标改为(4,0),其它条件不变,如图②,那么符合条件的等腰三角形有几个?求出所有符合条件的点P的坐标;
(3)若将(1)中的点M的坐标改为(5,0),其它条件不变,如图③,请直接写出符合条件的等腰三角形有几个?请直接写出所有符合条件的点P的坐标.
(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,判断BE与CD的大小关系为:BE_____CD.(不需说明理由)
(2)如图2,已知△ABC,以AB、AC为边向外作等腰△ABD和等腰△ACE,且顶角∠BAD=∠CAE,连接BE、CD,BE与CD有什么数量关系?请说明理由;
(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B、E的距离.已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.
在平面直角坐标系中,设坐标轴的单位长度为1cm,整数点P从原点O出发,速度为1cm/s,且点P只能向上或向右运动,请回答下列问题:
(1)填表:
P从O点 出发时间 |
可得到整数点的坐标 |
可得到整数 点的个数 |
1秒 |
(0,1)、(1,0) |
2 |
2秒 |
||
3秒 |
(2)当P点从点O出发10秒,可得到的整数点的个数是_______个;
(3)当P点从点O出发多少秒时,可得到整数点(10,5)?
如图,直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).
(1)求直线AB对应的函数关系式;
(2)若直线AB上的点C在第一象限,且S△BOC=2,求点C的坐标.
如图所示,某探险队的A组由驻地O点出发,以12km/h的速度前进,同时,B组也由驻地O出发,以9km/h的速度向另一个方向前进,2h后同时停下来,这时A,B两组相距30km.
(1)此时,A,B两组行进的方向成直角吗?请说明理由;
(2)若A,B两组仍以原速前进,相向而行,经过几小时后相遇?