(本题共12分)定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.
(1)已知:如图1,四边形是“等对角四边形”,
,
,
.求
,
的度数.
(2)在探究“等对角四边形”性质时:
① 小红画了一个“等对角四边形”(如图2),其中
,
,此时她发现
成立.请你证明此结论.
② 由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.
(3)已知:在“等对角四边形”中,
,
,
,
.求对角线
的长.
列方程解应用题
某一工程进行招标时,接到了甲、乙两个工程队的投标书,施工1天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案: 方案(1):甲工程队单独完成这项工程,刚好如期完成;方案(2):乙工程队单独完成这项工程,要比规定日期多5天;方案(3):若甲、乙两队合作4天,余下的工程由乙工程队单独做,也正好如期完成;在不耽误工期的情况下,你觉得哪种方案最省钱?请说明理由。
如图,△ABC中,∠ACB=90度,AC=7,BC=24,CD⊥AB于D。
(1)求AB的长;
(2)求CD的长。
如图,△ACB和△ECD都是等腰直角三角形,ACB=
ECD=90°.D为AB边上一点.
求证:(1)△ACE△BCD;
(2)AD+DB
=DE
.
先化简代数式,然后选取一个使原式有意义的
的值代入求值.
解方程: