(本题8分)计算:
(1)
(2)
回答下列问题:
(1)如图所示的甲、乙两个平面图形能折成什么几何体?________________.
(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为,顶点个数为
,棱数为
,分别计算第(1)题中两个多面体的
的值?你发现什么规律?
(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.
如图是一个正方体的平面展开图,若要使得图中平面展开图折叠成正方体后,相对面上的两个数之和均为5,求成正方体后,相对面上的两个数之和均为5,求x+y+z的值.
阅读下列文字与例题:
将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.
例如:(1)am+an+bm+bn
=(am+bm)+(an+bn)
=m(a+b)+n(a+b)
=(a+b)(m+n)
(2)x2-y2-2y-1
=x2-(y2+2y+1)
=x2-(y+1)2
=(x+y+1)(x-y-1)
试用上述方法分解因式a2+2ab+ac+bc+b2.
图a是一个长为2m、宽2 n的长方形, 沿图中虚线用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.
(1)写出图b中的阴影部分的正方形的边长;
(2)写出图b中阴影部分的面积;
(3)观察图b写出下列三个代数式之间的等量关系;
根据(3)题中的等量关系,解决如下问题:若,求
计算:
(1);
(2);
(3);
(4)×