在一个不透明的盒子里,装有三个分别写有数字6,2,7的小球,它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字.请你用画树形图或列表的方法,求下列事件的概率:
(1)两次取出小球上的数字相同;
(2)两次取出小球上的数字之和大于10.
小明的父亲上星期日买进某公司股票1000股,每股:30 元,下表为本周内每日该股票的涨跌情况(单位元)
星期 |
一 |
二 |
三 |
四 |
五 |
六 |
每股张跌 |
+4 |
+4.5 |
-1 |
-2.5 |
-6 |
+2 |
(1)星期三收盘时,每股是多少元?
(2)本周内最高价是每股多少元?最低每股多少元?
(3)已知小明父亲买进股票时付了1.5‰的手续费,卖出时需付成交额1.5‰的手续费和1‰的交易税,如果他在周六收盘前将全部股票卖出,他的收益情况如何?
出租车司机小李某天上午营运时是在东西走向的大街上进行的,如果规定向东为正,向西为负,他这天上午所接六位乘客的行车里程(单位:km)如下:
-2,+5,-1,+1,-6,-2,
问:(1)将最后一位乘客送到目的地时,小李在什么位置?
(2)若汽车耗油量为0.2L/km(升/千米),这天上午小李接送乘客,出租车共耗油多少升?
(3)若出租车起步价为8元,起步里程为3km(包括3km),超过部分每千米1.2元,问小李这天上午共得车费多少元?
如图,是由一些大小相同的小正方体组合成的简单几何体.
(1)图中有 块小正方体;
(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.
在数轴上表示下列各数:0,–2.5,,–2,+5,
,并比较它们的大小.
如图1,正方形ABCD中,E、F分别在AD、DG上,EF的延长线交BC的延长线于G点,且∠AEB=∠BEG;
(1)求证:∠ABE=∠BGE;
(2)如图2,若AB=5,AE=2,求S△BEG;
(3)如图3,若E、F两点分别在AD、DC上运动,其它条件不变,试问:线段AE、EF、FC三者之间是否存在确定的数量关系?若存在,请写出它们之间的数量关系,并证明;若不存在,请说明理由.