将一副三角板放在同一平面,使直角顶点重合于点.
(1)如图1,保持不动,把
绕着点
旋转,使得
,求
的度数.
(2)当与
重叠时,直接写出
与
的大小关系。
(3)如图1,若,求
的度数。
你发现与
存在怎样的数量关系?用式子直接表示出来。
(4)如图2,当与
不重叠时,(3)中
与
关系式是否成立,请简要说明理由.
![]() |
有 名待业人员参加某企业甲、乙、丙三个部门招聘,到各部门报名的人数百分比见图表①,该企业各部门的录取率见图表②( )
(1)到乙部门报名的人数有_____人,乙部门的录取人数是_____人,该企业的录取率为_____;
(2)如果到甲部门报名的人员中有一些人员改到丙部门报名,在保持各部门录取率不变的情况下,该企业的录取率将恰好增加 ,问有多少人从甲部门改到丙部门报名?
(1)如图①, 的面积是 ,点 是 的中点,连接 的面积是_____.
(2)如图②,四边形 的面积是 ,点 分别是一组对边 的中点,连接 ,则四边形 的面积是_____.
(3)如图③,点 分别是一组对边 上的点,且 ,若四边形 的面积是 ,连接 ,则四边形 的面积是_____.
(4)如图④, 的面积是 ,点 从点 出发沿 以每秒 个单位长的速度向点 运动,点 从点 出发沿 以每秒 个单位长的速度向点 运动.点 分别从点 同时出发,当其中一点到达端点时,另一点也随之停止运动.请问四边形 的面积的值是否随着时间 的变化而变化?若不变,请求出这个值;若变化,说明怎样变化的.
问题探究:
(1)请你在图①中做一条直线,使它将矩形 分成面积相等的两部分;
(2)如图②,点 是矩形 内一点,请你在图②中过 点作一条直线,使它将矩形 分成面积相等的两部分.
问题解决:
(3)如图③,在平面直角坐标系 中,多边形 的顶点坐标分别是 .若直线 经过点 ,且将多边形 分割成面积相等的两部分,求直线 的函数表达式.
如图,四边形 是正方形 的内接四边形, 与 都是锐角,已知 ,四边形 的面积为 .求正方形 的面积.
如图,四边形 是 的内接四边形。
(1)若 或 ,求证 ;
(2)若 ,问是否能推出 或 ?证明你的结论.