如图,平面直角坐标系中O为坐标原点,直线y=x+6与x轴、y轴分别交于A、B两点,C为OA中点;
(1)求直线BC解析式;
(2)动点P从O出发以每秒2个单位长度的速度沿线段OA向终点A运动,同时动点Q从C出发沿线段CB以每秒个单位长度的速度向终点B运动,过点Q作QM∥AB交x轴于点M,若线段PM的长为y,点P运动时间为t(s),求y于t的函数关系式;
(3)在(2)的条件下,以PC为直径作⊙N,求t为何值时直线QM与⊙N相切.
如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C同时出发,沿矩形的边按逆时针方向移动,点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第ts时,△EFG的面积为Scm2。
(1)当=1s时,S的值是多少?
(2) 当时,点E、F、G分别在边AB、BC、CD上移动,用含t的代数式表示S;当
时,点E在边AB上移动,点F、G都在边CD上移动,用含t的代数式表示S.
(3)若点F在矩形的边BC上移动,当为何值时,以点B、E、F为顶点的三角形与以C、F、G为顶点的三角形相似?请说明理由
某商场将进货价为30元的台灯以40元售出,平均每月能售出600个,调查发现,售价在40元至60元范围内,台灯的售价每上涨1元,其销售量就将减少10个。为了实现平均每月10000元的销售利润,这种台灯应涨价多少元?这时应购进台灯多少个?
如图,已知左右并排的两棵树高分别是AB=8m,CD=12m,两树的根部的距离BD=5m,小明眼睛离地面的高度EF为1.6m,他沿着正对这两棵树的一条水平直路从左到右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?
如图,在矩形中,对角线
与
相交于点
,过点
作
∥
,
过点作
∥
,两线相交于点
。
求证:四边形是菱形.
已知,如图,AB和DE是直立在地面上的两根立柱AB=6m,某一时刻AB在太阳光下的投影BC=3m。
(1)请你在图中画出此时DE在太阳光下的投影EF;
(2)在测量AB的投影时,同时测量出DE在太阳光下的投影EF长为6m,请你计算DE的长。