已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH,求∠KOH的度数.
如图,EF∥AD,∠1=∠2,∠BAC="70" o,求∠AGD。
解:∵EF∥AD,
∴∠2=∠3()
又∵∠1=∠2,
∴∠1=∠3,
∴AB∥DG ()
∴∠BAC+="180" o()
∵∠BAC=70 o,∴∠AGD=。
已知三角形ABC、点D,过点D作三角形ABC平移后的图形,使D点与A点为对应点。
如图1,在正方形中,点
分别为边
的中点,
相交于点
,则可得结论:①
;②
.(不需要证明)
(1)如图2,若点不是正方形
的边
的中点,但满足
,则上面的结论①,②是否仍然成立?(请直接回答“成立”或“不成立”)
(2)如图3,若点分别在正方形
的边
的延长线和
的延长线上,且
,此时上面的结论1,2是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由.
(3)如图4,在(2)的基础上,连接和
,若点
分别为
的中点,请判断四边形
是“矩形、菱形、正方形、等腰梯形”中的哪一种?并写出证明过程.
阅读下面材料,再回答问题:
有一些几何图形可以被某条直线分成面积相等的两部分,我们将“把一个几何图形分成面积相等的两部分的直线叫做该图形的二分线”,如:圆的直径所在的直线是圆的“二分线”,正方形的对角线所在的直线是正方形的“二分线”。
解决下列问题:
(1)菱形的“二分线”可以是。
(2)三角形的“二分线”可以是。
(3)在下图中,试用两种不同的方法分别画出等腰梯形ABCD的“二分线”.