某商场统计了今年1~5月A,B两种品牌冰箱的销售情况,并将获得的数据绘制成折线统计图.
(1)分别求该商场这段时间内A,B两种品牌冰箱月销售量的中位数和方差;
(2)根据计算结果,比较该商场1~5月这两种品牌冰箱月销售量的稳定性.
如图,已知反比例函数与一次函数
的图象在第一象限相交于点A(1,
),
(1)试确定这两个函数的表达式;
(2)求出这两个函数图像的另一个交点B的坐标,并根据图象写出使一次函数的值小于反比例函数值的x的取值范围.
如图,AB是⊙O的直径,BC是弦,OD⊥BC于E,交弧BC于D.
(1)请写出五个不同类型的正确结论;
(2)若BC=8,ED=2,求⊙O的半径.
已知.
(1)求的值;(2)若
,求
的值.
如图,已知△ABC中,BD、CE是高,F是BC中点,连接DE、EF和DF.
(1)求证:△DEF是等腰三角形;
(2)若∠A=45°,试判断△DEF的形状,并说明理由;
(3)若∠A:∠DFE=5:2,BC=4,求△DEF的面积.
如图,已知△ABC中,∠B=48°,∠C=62°,点E、点F分别在边AB和边AC上,将把△AEF沿EF折叠得△DEF,点D正好落在边BC上(点D不与点B.点C重合).
(1)如图1,若BD=BE,则△CDF是否为等腰三角形?请说明理由.
(2)△BDE、△CDF能否同时为等腰三角形?若能,请画出所有可能的图形,并直接指出△BDE、△CDF的三个内角度数;若不能,请说明理由.