如图1,在四边形ABCD中,∠ABC+∠ADC=180°,BE、DF分别是∠ABC与∠ADC的平分线,∠ADF与∠AFD互余.
(1)试判断直线BE与DF的位置关系,并说明理由;
(2)如图2,延长CB、DF相交于点G,过点B作BH⊥FG,垂足为点H,试判断∠FBH与∠GBH的大小关系,并说明理由.
先化简,再求值:,其中
.
解不等式组:
如图,点C,D在线段BF上,,
,BC=DE.
求证:AC=FE.
如图1,在平面直角坐标系内,已知点
,
,
,
,记线段
为
,线段
为
,点
是坐标系内一点.给出如下定义:若存在过点
的直线l与
,
都有公共点,则称点
是
联络点.
例如,点是
联络点.
(1)以下各点中,__________________是联络点(填出所有正确的序号);
①;②
;③
.
(2)直接在图1中画出所有联络点所组成的区域,用阴影部分表示;
(3)已知点M在y轴上,以M为圆心,r为半径画圆,⊙M上只有一个点为联络点,
①若,求点M的纵坐标;
②求r的取值范围.
如图1,在中,AB=AC,∠ABC =
,D是BC边上一点,以AD为边作
,使AE=AD,
+
=180°.
(1)直接写出∠ADE的度数(用含的式子表示);
(2)以AB,AE为边作平行四边形ABFE,
①如图2,若点F恰好落在DE上,求证:BD=CD;
②如图3,若点F恰好落在BC上,求证:BD=CF.