(本小题满分12分)某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
(1)补全频率分布直方图并求n、a、p的值;
(2)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.
(本小题满分10分,坐标系与参数方程选讲)
己知在平面直角坐标系中,圆
的参数方程为
(
为参数).以原点
为极点,以
轴的非负半轴为极轴的极坐标系中,直线
的极坐标方程为
,直线
与圆
相交于
两点,求弦
的长.
【原创】选修4-2:矩阵与变换(本小题满分10分)
设二阶矩阵,
满足
,
,求
..
如图,,
是半径为
的圆
的两条弦,它们相交于
的中点
,若
,
,求
的长.
已知函数。
(1)若f(x)的图象与g(x)的图象所在两条曲线的一个公共点在y轴上,且在该点处两条曲线的切线互相垂直,求b和c的值。
(2)若a=c=1,b=0,试比较f(x)与g(x)的大小,并说明理由;
(3)若b=c=0,证明:对任意给定的正数a,总存在正数m,使得当x时,恒有f(x)>g(x)成立。
已知数列中
.
(1)是否存在实数,使数列
是等比数列?若存在,求
的值;若不存在,请说明理由;
(2)若是数列
的前
项和,求满足
的所有正整数
.